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and
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Although particle hopping models have been introduced into tra�c science in the 1950s,
their systematic use has only started recently. Two reasons for this are, that they are
advantageous on modern computers, and that recent theoretical developments allow
analytical understanding of their properties and therefore more con�dence for their use.
In principle, particle hopping models �t between microscopic models for driving and uid-
dynamical models for tra�c ow. In this sense, they also help closing the conceptual gap
between these two. This paper shows connections between particle hopping models and
tra�c ow theory. It shows that the hydrodynamical limits of certain particle hopping
models correspond to the Lighthill-Whitham theory for tra�c ow, and that only slightly
more complex particle hopping models produce already the correct tra�c jam dynamics,
consistent with recent uid-dynamical models for tra�c ow. By doing so, this paper
establishes that, on the macroscopic level, particle hopping models are at least as good
as uid-dynamical models. Yet, particle hopping models have at least two advantages
over uid-dynamical models: they straightforwardly allow microscopic simulations, and
they include stochasticity.

1 Introduction

Vehicular tra�c has been a widely and thoroughly researched area in the 1950s
and 60s. 1;2;3 Vehicular tra�c theory can be broadly separated into two branches:
Tra�c ow theory, and car-following theory.

Tra�c ow theory is concerned with �nding relations between the three fun-
damental variables of tra�c ow, which are velocity v, density �, and ow q. Only
two of these variables are independent since they are related through q = � v.

Car-following theory regards tra�c from a microscopic point of view: The
behavior of each vehicle is modeled in relation to the vehicle ahead. As the de�nition
indicates, this theory concentrates on single lane situations where a driver reacts
to the movements of the vehicle ahead of him. Mathematical car-following theory
uses di�erential delay equations.

A more recent addition to the development of vehicular tra�c ow theory are
particle hopping models. Imagine a one-dimensional chain of cells, each cell either
empty, or occupied by exactly one particle. Movement of particles is achieved by
particles jumping from one cell to another according to speci�c movement rules. In
the context of vehicular tra�c, one can imagine a road represented by cells which
can �t exactly one car. A rough representation of car movements then is given by
moving cars from one cell to another. Actually, the �rst proposition of such a model
for vehicular tra�c is from Gerlough 4 in 1956 and has been further extended by
Cremer and coworkers. 5

apermanent a�liation
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This paper shows how particle hopping models �t into the context of tra�c
ow theory. It starts with short reviews of car following models (Section 2), and of
uid-dynamical tra�c ow models (Section 3). Section 4 de�nes di�erent particle
hopping models which are of interest in the context of tra�c ow. The paper
continues by showing connections between the uid-dynamical tra�c ow models
and particle hopping models. In some cases, these connections are exact and have
long been established, but have never been viewed in the context of tra�c theory.
These cases are shown in Section 5. In other cases, the dynamic behavior of tra�c
jam clusters can be compared to instabilities in the partial di�erential equations.
This description is only precise for the so-called cruise control limit of the particle
hopping models, where jams cannot start spontaneously but have to be started by
some external disturbance. This is described in Section 6. Section 7 explains in how
far these results carry over to other models, in which jams initiate spontaneously due
to uctuations of driver's behavior. Summary and discussion conclude the paper.

This paper derives from 6, which discusses many of the issues of this paper on
a more technical level.

2 Car-following theory

Many of us have learned heuristic driving rules such as \Abstand halber Tacho" or
\Leave two seconds time headway". Since time headway is equal to v=gap, where
v is velocity and gap is the front-bumper-to-end-bumper distance, one obtains as
a rough driving rule v / V (gap; : : :), where V is a preferred velocity function,
which is roughly linear in gap and may also depend on other variables. / means
\proportional to". This proportionality is also roughly con�rmed by measurement.3

Making this time-dependent, one may expect that people attempt to reach this
velocity after some time � , which is a delay time, summarizing the e�ects of reaction,
vehicle inertia, etc. This leads to

v(t+ �) = V (gap(t); : : :) ; (1)

which has, with V / gap, for example been used by Newell 7 and Whitham. 8

Two other car-following relations are of particular importance in the literature:

� Herman and coworkers (see 1;2;3) have used the form

a(t+ �) = const �
v(t)m

gap(t)l
��v(t) ; (2)

where a := dv
dt is the acceleration, �v is the velocity di�erence to the vehicle

ahead, and const, m, and l are empirical constants.

This equation is usually seen as a stimulus-response-relation, where �v is the
stimulus, a(t+ �) is the response, and const � v(t)m=gap(t)l is the sensitivity.
One can, though, also get some intuition for this equation on purely formal
grounds: 2 Time-deriving v(t+ �) / gap(t) leads to a(t+ �) / �v(t). Adding
a factor const � v(t)m=gap(t)m leads to Eq. 2.
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� More recently, the following equation has been used: 9

a(t) �
1

�
[V (gap(t))� v(t)] : (3)

Heuristically, one can obtain this equation by Taylor-expanding Eq. 1,8 which
leads to

v(t) + � � _v(t) + : : : = V (gap(t)) ; (4)

and after rearranging to Eq. 3. Note that this derivation is only heuristic, and
the mathematical solutions of Eq. 4 and of Eq. 1 for � 6= 0 may be di�erent,
which should be investigated in more detail.

3 Fluid-dynamical models for tra�c ow

3.1 Models without inertia

In tra�c ow theory, models can be roughly distinguished into two di�erent classes:
the ones which assume instantaneous adaption of velocity to density, and the ones
where this adaption needs some time because it has to overcome inertia. The �rst
class is the simpler one; the basic equation here is

@t�+ @xq = 0 ; (5)

where � is the density, q is the ow or current or throughput, and @t and @x are
partial derivatives with respect to time and space, respectively. The equation is
just the equation of continuity, and it simply expresses mass conservation.

In order to make this work, one has to give the ow as a function of density,
q = f(�), for example q / �(1��) (which would be the Greenshield relation, see 2).

Physically, one �nds behind these equations that velocity adapts instanta-
neously to the surrounding density, i.e. v � q=� = f(�)=� = F (� only). This is
exactly the well-known theory of Lighthill and Whitham, 10 and a much is known
how to handle these equations.

Note that, following a theoretical physics tradition, some variables are made
free of units before they are used. For example, density here is renormalized so that
it is between zero and one; in tra�c one would achieve this by dividing it by the
jam density:

� [no unit] :=
�real [number of cars per km]

�jam [number of cars per km]
; (6)

where possible units are indicated in the brackets.

3.2 Models including inertia

Models including momentum consist of a second equation describing the fact that
velocity does in reality not adapt instantaneously to the density. An often used
form of such a non-instantaneous velocity adaption term is 11;12

a �
dv

dt
� @tv + v @xv =

1

�
[V (�)� v] +

c2o
�
@x�+ � @2xv : (7)
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The equation says that individual acceleration (left hand side) is proportional to
the following three e�ects (right hand side):

� Di�erence between desired speed V (�) and actual speed v. Note that this term
is essentially the same as 1

�
[V (gap(t))� v] from the car-following models.

� Gradient of the density: If tra�c gets denser in the driving direction, one slows
down. A possible formal derivation of this term is that V (gap) is actually
not symmetric around the car and thus has to be expanded into V (gap) =
V (� +�x=2) = V (�) + 1

2
�x � V 0 � @x� + : : :, thus leading to a gradient term

of the density. 13

� A spatial smoothing (di�usion) term. This e�ect can better be derived as a
space-averaging e�ect; 6 it is thus not necessary to conceptually connect this
term to individual accelerations.

Note that the limit � ! 0 makes the velocity adaption in�nitely fast, i.e. returning
to the instantaneous adaption case.

A more comprehensive review of the uid-dynamical equations needed here can
be found, e.g., in 6.

Prigogine, Herman, and coworkers developed a kinetic theory for tra�c ow, 14

where the Lighthill-Whitham situation can be obtained as a limiting case of the
kinetic theory.

4 De�nitions of particle hopping models

This section de�nes several particle hopping models which are candidate models for
tra�c ow. They all have in common that they are de�ned on a lattice of, say,
length L, where L is the number of sites, and that each site can be either empty,
or occupied by exactly one particle. Also, in all models particles can only move in
one direction. The number of particles, N , is conserved except at the boundaries.

These models are sometimes also called cellular automata (CA). 15 Particle
hopping models and CA are not exactly the same, although the de�nitions are
overlapping. All CA models in this paper are particle hopping models; the inverse
is true except for the ASEP (see below).

This section starts out with the Stochastic Tra�c Cellular Automaton (STCA),
which has been proposed for tra�c ow by Nagel and Schreckenberg,16 and which is
currently implemented as a microsimulation option for large scale tra�c simulation
projects both in the United States 17 and in Germany. 18 The STCA includes strong
randomness in the rules. Setting this randomness to zero reduces the STCA to be
a much simpler, deterministic model, which, when restricting oneself to maximum
velocity vmax = 1, turns out to a well known cellular automaton model. In the third
model of this section, randomness is re-introduced, but in this case by changing
the update algorithm: Whereas in the �rst two models all particles are updated
synchronously based in \old" information, in this third model, particles are selected
in random sequence for individual updates.
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4.1 The Stochastic Tra�c Cellular Automaton (STCA)

The Stochastic Tra�c Cellular Automaton (STCA) is de�ned as follows. Each par-
ticle (= car) can have an integer velocity between 0 and vmax, which is often taken
to be 5.16 The complete con�guration at time-step t is stored, and the con�guration
at time-step t+1 is computed from that (parallel or synchronous update). For each
particle, the following steps are done in parallel:

� Find number of empty sites ahead (= gap) at time t.

� If v > gap (too fast), then slow down to v := gap. [rule 1]

� Else if v < gap (enough headway) and v < vmax, then accelerate by one:
v := v + 1. [rule 2]

� Randomization: If after the above steps the velocity is larger than zero
(v > 0), then, with probability p, reduce v by one. [rule 3]

� Particle propagation: Each particle moves v sites ahead. [rule 4]

Note that, because of integer arithmetic, conditions like v > gap and v � gap + 1
are equivalent.

The randomization (rule 3) condenses three di�erent properties of human driv-
ing into one computational operation: Fluctuations at maximum speed, over-
reactions at braking, and retarded (noisy) acceleration.

Despite its simplicity, this model is astonishingly successful in reproducing real-
istic behavior such as start-stop-waves (Fig. 1) and realistic fundamental diagrams
(Fig. 2, compare with 28). 16

Due to the given discretization of space and time, proper units are often
omitted in the context of particle hopping or cellular automata models. Proper
units here would be: [gap] = number of cells, [v] = number of cells per time step,
[t] = number of time steps, etc. For that reason, it is possible to write something
like v < gap, which properly would have to be v < gap=(time step).

4.2 The deterministic limit of the STCA (CA-184)

One can take the deterministic limit of the STCA by setting the randomization
probability p equal to zero, which just amounts to skipping the randomization step.
See Figs. 3 and 4. It turns out that, when using maximum velocity vmax = 1, this
is equivalent 19 to the cellular automaton rule 184 in Wolfram's notation, 15 which
is why I use the notation CA-184.

4.3 The Asymmetric Stochastic Exclusion Process (ASEP)

The probably most-investigated particle hopping model is the Asymmetric Stochas-
tic Exclusion Process (ASEP) (e.g. 19;20;21;22). It is de�ned as follows:

� Pick one particle randomly. [rule 1]

� If the site to the right is free, move the particle to that site. [rule 2]
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Figure 1: Space-time plot for the STCA, vmax = 5, � = 0:09 (i.e. slightly above �(qmax)),
starting from ordered initial conditions. The ordered state is meta-stable, i.e. \survives" for
about 300 iterations until is spontaneously separates into jammed regions and into regions with

� = �(qmax).

For a space-time plot of the ASEP, see Fig. 5.
The ASEP is closely related to CA-184/1 and STCA/1, where \/1" means

\with vmax = 1". The di�erence actually only is in the manner in which sites are
updated. CA-184 and STCA update all sites synchronously, whereas ASEP uses a
random serial sequence.

Going from the ASEP to CA-184/1, i.e. changing the update from randomly
asynchronous to deterministic synchronous, produces very di�erent dynamics 19

(compare Fig. 5 to 3 and 4). Re-introducing the randomness via the randomization
(rule 3) in the STCA again leads to di�erent results (Fig. 1).
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Figure 2: Flow-density fundamental diagram for the STCA. Short-time averages are taken over
300 simulation steps and thus mimic the 5-minute averages often taken in reality.
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Figure 3: Space-time plot for CA-184/5 and subcritical density. Here, dots represent empty spaces,
and integer numbers denote the velocity of the particle at that position. Note that one can follow
individual particles from left to right. The wave velocity in this regime is c = vmax, i.e. the holes

between platoons, which move with vmax, are already the waves.

5 Particle hopping models and uid dynamics

Writing about both particle hopping and uid-dynamical models for tra�c ow
does not make much sense as long as one cannot compare them. Fortunately, such
a comparison is possible and will turn out to be quite instructive. Actually, for some
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Figure 4: Space-time plot for CA-184/5 and supercritical density. Not that one can still follow
individual particles from the left to right. Wave velocity here is c = q0 = �1, as can be easily seen.

of the mentioned particle hopping models, uid-dynamical limits are known exactly.
By uid-dynamical limit one technically means the limit where the grid size �x goes
to zero, both the number of grid points, n, and the number of particles, N , go to
in�nity, while one keeps the system size, L = n ��x and the density � = N=n both
constant. More intuitively, a uid-dynamical description of a particle hopping model
is a description where one averages over enough particles so that the granularity of
the original system is no longer visible.

5.1 ASEP/1

The classic stochastic asymmetric exclusion process corresponds to the noisy Burg-
ers equation. More precisely, the hydrodynamic limit of the ASEP particle process
is a di�usion equation

@t�+ @xq = D@2x�+ � (8)

with a current 19;20 of q = � (1 � �). Interestingly, this is exactly the Lighthill-
Whitham case, specialized to the Greenshields ow relation, with terms added for
noise and di�usion. In other words, the ASEP/1 particle hopping process and the
Lighthill-Whitham-theory (plus noise plus di�usion), specialized to the case of the
Greenshields ow-density relation, describe the same behavior. In consequence,
many phenomena of this particle hopping process can be understood using the
Lighthill-Whitham theory.

Inserting the ow relation into Eq. 8 yields @t�+@x��@x�
2 = D@2x�+�, which

is a Burgers-type equation.23 In the steady state, this model shows kinematic waves
(= small jams), which are produced by the noise and damped by di�usion (Fig. 5).
These non-dispersive waves move forwards (wave velocity c = dq=d� = 1� 2� > 0)
for � < 1=2 and backwards (c < 0) for � > 1=2. At � = 1=2, the wave velocity is
exactly zero (c = 0), and this is the point of maximum throughput. 21
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Figure 5: Space-time plot for random sequential update, vmax = 1 (ASEP/1), and � = 0:3. Black
dots represent particles; consecutive horizontal lines represent con�gurations at consecutive time
steps. Clearly, the kinematic waves are moving forwards. For � > 1=2, the kinematic waves would

be moving backwards.

The drawback of this model with respect to tra�c ow is that it does neither
have a regime of laminar ow nor \real", big jams (see also Fig. 5). Because of the
random sequential update, vehicles with average speed v uctuate severely around
their average position given by v t. As a result, they always \collide" with their
neighbors, even at very low densities, leading to \mini-jams" everywhere. This is
clearly unrealistic for light tra�c.
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5.2 CA-184

Using a maximum velocity higher than one does not change the general behavior
of CA-184. It therefore makes sense to directly discuss the general case.

The CA-184/1 is the deterministic counterpart of the ASEP/1. But taking
away the noise from the particle update completely changes the dynamics. 19 The
model now corresponds to the non-di�usive, non-noisy equation of continuity

@t�+ @xq = @t�+ q0 @x� = 0 (9)

with

q0 =
dq

d�
=

�
vmax for � < �qmax

�1 for � > �qmax ,
(10)

which is, except at � = �qmax, a linear ow-density relation. The intersection point
of the fundamental diagram divides two phenomenological regimes: light tra�c
(� < �qmax; Fig. 3; wave velocity c = q0 = vmax) and dense tra�c (� > �qmax;
Fig. 4; wave velocity c = �1).

Note that this is again the Lighthill-Whitham theory, this time without the
addition of noise or di�usion, and with a di�erent ow-density relation than before.

6 Cruise control limit of the STCA (STCA-CC)

No uid-dynamical limits for the other particle hopping models are known, although
some analytic approximations for average behavior exist.24 Another, more intuitive,
way to gain further insight is to look into the tra�c jam dynamics of the di�erent
models. In order to separate out the tra�c jam dynamics from other e�ects, as
a �rst step one would like to modify the models in such a way that always only
one jam at a time exists. This is achieved by introducing the \cruise control limit"
(see also 25 for more details). Here, uctuations at free driving (i.e. when v = vmax

and gap � vmax) are set to zero. The result is that tra�c in these models, once
all vehicles are in the free driving regime, remains deterministic and laminar for
all times. A single jam can then be initiated by perturbing one single car by, say,
stopping it and letting it re-accelerate. In general, many di�erent choices for the
local perturbation give rise to the same large scale behavior. The perturbed car
eventually re-accelerates back to maximum velocity. In the meantime, though, a
following car may have come too close to the disturbed car and has to slow down.
This initiates a chain reaction { an emergent tra�c jam (see Fig. 6).

Since the STCA-CC has no uctuations at free driving, the maximum ow one
can reach is with all cars at maximum speed and gap = vmax. Therefore, one can
manually achieve ows which follow, for � � �c2, the same q-�-relationship as the
CA-184, where �c2 now denotes the density of maximum ow of the deterministic
model CA-184, i.e. �c2 = 1=(vmax + 1).

Above a certain �c1, these ows are unstable to small local perturbations. This
density will turn out to be a \critical" density; for that reason I will use �c � �c1.

Now assume that a single jam has been initiated in an in�nite system of density
�0. It is straightforward to see 25 that n(t), the number of cars in the jam, follows
a usually biased, absorbing random walk, where n(t) = 0 (jam dissolved) is the
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Figure 6: Emergent tra�c jam in the cruise control limit in a closed system, vmax = 5, � = 0:09,
i.e. slightly above critical. The ow is started in a deterministic, supercritical con�guration. A

single disturbance starts a jam.

absorbing state: Every time a new car arrives at the end of the jam, n(t) increases
by one, which is governed by the inow rate, qin. Every time a car leaves the jam
at the outow side, n(t) decreases by one, and this is governed by the outow rate,
qout. When qin = qout, n(t) follows an unbiased absorbing random walk. qin 6= qout
introduces a bias or drift term / (qin � qout) � t. The statistics of such absorbing
random walks can be calculated exactly. See 25 for more details.

For qin < qout, jams shrink and eventually dissolve. For qin > qout, jams
grow forever. For qin = qout, the jams \cannot decide" and show large, \critical",
uctuations, which can be described by critical exponents. 25 For that reason, qc :=
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qout is the critical ow, and �c := �(qout) is the critical density. Note that these
quantities are entirely given by the outow behavior.

Especially for theoretical considerations, one often uses a closed system, i.e.
with periodic boundary conditions (\tra�c in a closed loop"). Such a situation is
actually shown in Fig. 6. One clearly sees that once the system \feels" its �niteness
(i.e. the outow from the jam also becomes its inow), then the situation changes:
The initially supercritical jam stops to grow, and the system is now best described
as having undergone a phase separation: from a one-phase system with supercritical
laminar tra�c into a two-phase system, where one phase consists of exactly critical
outow tra�c, and the other phase is the jam. | It is clear from these remarks
that, in a large closed system which is only slightly perturbed, maximum throughput
occurs at � = �c: For � < �c, jams quickly dissolve, therefore ow is q = vmax � � <
qmax = vmax � �c. For � > �c, the system is a mixture of laminar ow regions
operating at qmax, and jams, operating at lower ow. Only at � = �c, the whole
system operates at qmax. All this is made more precise in

25.

This picture is consistent with recent results both in uid-dynamical models
and mathematical car-following models for tra�c ow:

� Tra�c simulations using a uid-dynamical model starting from nearly homo-
geneous conditions eventually form stable waves. 26;27 One has, though, to
distinguish between small amplitude and large amplitude instabilities. 27 It
seems that the large amplitude instability (i.e. the one which is not found
by linear stability analysis) is the one which corresponds more closely to the
qin > qout description.

� The separation of tra�c into laminar and jammed phases can also be found
in deterministic continuous mathematical car-following models. 9

7 Returning to the Stochastic Tra�c CA (STCA)

Returning to the full STCA, the important di�erence is that jams now start
spontaneously and independently of other jams because vehicles uctuate even
at maximum speed. One consequence is that the supercritical laminar ow (i.e.
�c < � < �c2) now is meta-stable at best, and eventually spontaneously (i.e. with-
out external perturbation) decomposes into laminar regions with � = �c, and jams
(see Fig. 1).

A more precise explanation of this is as follows. Laminar tra�c will always and
at all densities, due to small uctuations, have small disturbances which can develop
into jams. The inow to the jam decides if such a jam can become long-lived or not:
Since the average outow qout is �xed by the driving dynamics, qin > qout makes
the jam (in the average) long-lived, qin < qout not.

With this dynamical explanation in mind, it is fairly straightforward to explain
the high variations in the short time measurements. Measuringin, in a situation like
in Fig. 1, at a �xed position (i.e. along an arbitrary vertical line), one can measure
arbitrary combinations of supercritical laminar tra�c, critical laminar tra�c, jams,
or tra�c during acceleration or slowing down, thereby obtaining the characteristic
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data cloud of real-world fundamental diagrams. 28;29 This dynamical picture also
makes precise Treiterer's hysteresis argument. 30;29 See 6 for more details.

8 Summary and discussion

At a �rst glance, particle hopping models seem a somewhat crude approximation
of real world tra�c. Yet, they produce surprisingly realistic dynamics, for example
with respect to start-stop wave formation and with respect to fundamental dia-
grams. The reason for this is that even when the microscopic dynamics is only
crudely represented, the macroscopic behavior can still be very realistic. This has
already been known for some time and in some cases even been proven for example
for the lattice gas methods for Navier-Stokes-equations. 31 More interesting in the
context of tra�c ow theory are results for one-dimensional systems, and they turn
out to be even more instructive than expected.

After a short review of car-following and uid-dynamical models for vehicu-
lar tra�c, this paper de�nes a certain particle hopping model, called STCA for
Stochastic Tra�c Cellular Automaton. After that, sub-cases or variations of this
model are discussed, which make it arguably less realistic, but have the advantage
that these cases are well understood. It turns out that two of these sub-cases are
described by certain cases of the Lighthill-Whitham theory, which has been used
in the tra�c context for about 40 years now. And in addition, the way in which
the STCA goes beyond these models (by including momentum) is exactly the same
way in which recent uid-dynamical work goes beyond Lighthill-Whitham theory.
Moreover, one can show that certain important aspects of the tra�c jam dynamics
of the STCA are phenomenologically the same as in the modern uid-dynamical
models. Yet, the STCA goes even beyond that at least with respect to uctuations,
which the STCA includes but the uid-dynamical theories do not.

Thus, one learns that particle hopping models, crude as they are on the mi-
croscopic level, are \good" enough to lead to reasonable behavior on the uid-
dynamical level.

It is clear that there are limits to how well particle hopping models will be able to
represent microscopic properties of tra�c. Sometimes, it will be possible to expand
the particle hopping model, for example by choosing a higher resolution,32 but often
enough, it will be necessary to resort to a higher �delity model. Nevertheless, the
body of theory which is already available or currently being developed for particle
hopping models puts them into a special position here: Understanding what a model
does is the best way of knowing what it cannot do.

In situations where one is interested in mostly macroscopic quantities which
could be obtained in principle by a uid-dynamical model, but needs microscopic
ingredients such as individual trip plans, or fast and slow vehicles, or { most im-
portantly { some information about uctuations, then particle hopping models are
a good way to go, especially if one wants to save computational resources.
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